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A Powerful and Flexible Multilocus Association Test
for Quantitative Traits

Lydia Coulter Kwee,1 Dawei Liu,3 Xihong Lin,4 Debashis Ghosh,5 and Michael P. Epstein2,*

Association mapping of complex traits typically employs tagSNP genotype data to identify a trait locus within a region of interest. How-

ever, considerable debate exists regarding the most powerful strategy for utilizing such tagSNP data for inference. A popular approach

tests each tagSNP within the region individually, but such tests could lose power as a result of incomplete linkage disequilibrium between

the genotyped tagSNP and the trait locus. Alternatively, one can jointly test all tagSNPs simultaneously within the region (by using ge-

notypes or haplotypes), but such multivariate tests have large degrees of freedom that can also compromise power. Here, we consider

a semiparametric model for quantitative-trait mapping that uses genetic information from multiple tagSNPs simultaneously in analysis

but produces a test statistic with reduced degrees of freedom compared to existing multivariate approaches. We fit this model by using

a dimension-reducing technique called least-squares kernel machines, which we show is identical to analysis using a specific linear

mixed model (which we can fit by using standard software packages like SAS and R). Using simulated SNP data based on real data

from the International HapMap Project, we demonstrate that our approach often has superior performance for association mapping

of quantitative traits compared to the popular approach of single-tagSNP testing. Our approach is also flexible, because it allows easy

modeling of covariates and, if interest exists, high-dimensional interactions among tagSNPs and environmental predictors.
Introduction

The arrival of improved high-throughput genotyping tech-

nology has accelerated the use of association methods for

dissection of the genetic mechanisms of complex traits.

Using panels of single-nucleotide polymorphisms (SNPs),

association methods seek to identify those genetic markers

that either are a trait locus or are in linkage disequilibrium

(LD) with a trait locus. In the process of association map-

ping of a complex trait, interest will eventually focus on re-

gions or genes that are identified either from interesting

signals from previous gene-mapping work or from per-

ceived biological relevance to the trait of interest. To exam-

ine whether such a region harbors a trait locus, a study

could genotype and subsequently analyze all polymorphic

SNPs in the genetic interval. However, the probable exis-

tence of LD in the region will induce correlation among

such SNPs such that many of the genetic markers provide

redundant information for association analysis. Therefore,

many association studies instead genotype a reduced set of

SNPs—called tagSNPs—within the region that effectively

captures the genetic variation from all SNPs within the re-

gion but substantially reduces the genotype cost. Studies

can identify relevant tagSNPs by applying existing selec-

tion algorithms1–3 to SNP genotype data from existing

public databases of human genetic variation, such as the

International HapMap Project.4

In this article, we focus on the use of tagSNP data to iden-

tify genetic regions that influence a quantitative trait of in-

terest by using samples collected under a population-based

study design. Currently, considerable debate exists regard-

ing the most powerful manner by which to utilize such
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tagSNP data in association analysis. A simple and popular

approach considers association testing of each individual

tagSNP with the quantitative trait of interest (via regres-

sion or ANOVA methods) followed by inference on the

maximum of the resulting single-tagSNP statistics. Because

of the testing of multiple correlated tagSNPs within a re-

gion, one must implement an appropriate multiple-testing

procedure to ensure appropriate significance levels. Such

multiple-testing corrections may include permutation pro-

cedures, efficient Monte Carlo procedures,5 or a Bonferroni

correction based on the effective number of independent

tests within the region.6,7

Although the testing of individual tagSNPs is simple to

implement, such methods may have low power if each

tested tagSNP is in incomplete LD with the (untyped)

quantitative-trait locus (QTL). This potential liability of

single-tagSNP approaches led to the development of novel

statistical approaches that consider the joint effects of

tagSNPs simultaneously within analysis. Such multivariate

tagSNP analyses of quantitative traits typically apply multi-

linear regression to model a subject’s trait as a function of

a vector of covariates corresponding to either the subject’s

genotypes at the various tagSNPs or the subject’s pair of

tagSNP-based haplotypes.8–10 Such regression procedures

produce omnibus test statistics that follow a c2 distribution

with degrees of freedom equal to either the number of

modeled tagSNPs (for a genotype-based analysis) or the

number of observed haplotypes minus one (for a haplo-

type-based analysis).

Because these multivariate approaches combine genetic

information from multiple tagSNPs simultaneously into

analysis, they intuitively should provide greater power to
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detect QTLs than do tests of individual tagSNPs. However,

many simulation studies have found the opposite result to

be true: Multivariate approaches typically have similar or re-

duced power relative to single-SNP procedures11–13 unless

the trait originates from the effect of a specific haplotype

rather than a specific SNP.13 An explanation for this surpris-

ing finding is that multivariate procedures produce test sta-

tistics with degrees of freedom that will increase substan-

tially (particularly in the situation of haplotype analysis)

with the number of modeled tagSNPs within the region.10

As the degrees of freedom of the test statistic increases, it

follows that the power of the omnibus test will decrease.

Therefore, it is likely that any information gained from joint

consideration of multiple tagSNPs in association analysis of

a quantitative trait will subsequently be lost by dealing with

test statistics with large degrees of freedom.

Given these results, we seek to develop a novel statistical

approach for association mapping of quantitative traits

that incorporates all tagSNPs (and, hence, all valuable ge-

netic information) within a region into the association

analysis but produces test statistics with smaller degrees

of freedom than the multivariate approaches described

earlier. Existing statistical work in this area generally ap-

proaches the problem in one of two broad ways. The first

strategy applies a dimension-reduction procedure such as

a Fourier transformation14 or principal components15 to

the tagSNP data in the region to produce a reduced set of

orthogonal genetic predictors that contain the majority

of information found in the original tagSNPs. One then

models this reduced set of genetic predictors within a

multilinear regression framework and constructs appropri-

ate omnibus tests for inference (which should have smaller

degrees of freedom than a standard multivariate test). The

second strategy calculates a measure of average tagSNP

similarity for each pair of subjects and compares the pair-

wise genetic similarity with the pairwise trait similar-

ity.16,17 One can measure such tagSNP similarity by using

a ‘‘kernel’’ function that reduces a comparison of multiple

tagSNPs for a pair of subjects into a single scalar factor. Be-

cause of this phenomenon, resulting statistics using kernel

functions typically have small degrees of freedom; for ex-

ample, Schaid et al.16 constructed a kernel-based U-statistic

for case-control association analysis that has only 1 degree

of freedom. In addition, the use of a kernel function is ap-

pealing because it allows for the inclusion of prior informa-

tion (such as bioinformatic relevance or association signals

from tagSNPs in an independent study) in the form of

weights to assist in the evaluation of the tagSNP similarity.

One drawback of these existing similarity-based approaches

is that they do not easily allow for covariates and sometimes

require computationally intensive permutation procedures

to establish significance.17

In this article, we propose a novel approach for associa-

tion mapping of quantitative traits that uses all tagSNP

data simultaneously in analysis but produces test statistics

with smaller degrees of freedom than multivariate tagSNP

approaches. We base our approach on a semiparametric-
The Am
regression framework18 that regresses the quantitative trait

of interest on a smooth nonparametric function of the

tagSNP genotypes within the region, adjusting for the

parametric effects of any covariates of interest. As we will

show, we can model this nonparametric function of the

tagSNP data in a reduced-dimension space that is induced

by a user-defined kernel function. As a result, statistics that

test for association between the trait and the nonparamet-

ric function of the tagSNP effects should have reduced de-

grees of freedom compared to existing multivariate tests

and, hence, should have improved power to detect QTLs.

Unlike existing dimension-reduction techniques, we will

show that our approach permits us to incorporate valuable

prior information in the analysis via the kernel function.

Unlike existing similarity approaches, we will show that

our approach can easily allow for covariates and interac-

tion terms. Further, we can rely on asymptotic theory to es-

tablish significance of the resulting tests, avoiding compu-

tationally intensive permutation procedures.

We estimate the parameters in our proposed semipara-

metric model by using a flexible high-dimensional tech-

nique called least-squares kernel machines (LSKM).19,20

Previously, LSKM methods have been applied to continu-

ous variables, such as expression data from microarray

analysis.20 Here, we propose the novel use of kernel func-

tions that are designed for categorical tagSNP data. The ker-

nels we discuss incorporate relevant weights as well as ap-

propriate measures of genetic similarity between subjects.

Although LSKM fitting of a semiparametric model appears

complicated, Liu et al.20 noted that one can represent the

LSKM procedure by using a specific form of a linear mixed

model, such that one can estimate and test the nonpara-

metric function of the tagSNP data by using simple re-

stricted-maximum-likelihood procedures that are typically

applied to mixed models and are available in common sta-

tistical software packages such as SAS and R.

In subsequent sections, we develop our semiparametric

model and show how we can estimate model parameters

by using the LSKM maximization approach of Liu et al.20

We then show how one can represent the LSKM approach

in terms of a linear mixed model that facilitates testing of

the nonparametric function of the tagSNP genotype data.

Using simulated tagSNP data based on real data from the

International HapMap Project,4 we show that our pro-

posed semiparametric approach often has improved power

to detect an association between a genetic region and

a quantitative trait compared to the popular single-tagSNP

testing approach. We also describe a variety of valuable

gene-mapping extensions of our semiparametric approach

in the Discussion.

Material and Methods

Notation
Using a population-based study design, we assume a sample of N

unrelated subjects. Let Yj denote the quantitative trait value for
erican Journal of Human Genetics 82, 386–397, February 2008 387



subject j (j¼ 1, ., N). We assume that each subject is genotyped at

S tagSNPs within the region of interest. We let Gj,s denote the ge-

notype of subject j at tagSNP s (s ¼ 1, ., S) and let Gj ¼ (Gj,1,

Gj,2, ., Gj,S) denote an (S x 1) vector of all tagSNP genotypes for

subject j. For tagSNP s, we code Gj,s to be the number of copies

of the minor allele that the subject j possesses at the tagSNP

such that the predictor takes values of 0, 1, or 2. These values cor-

respond to an additive model of allelic effect; we can consider al-

ternative coding scenarios for Gj,s under dominant and recessive

models, if desired. Finally, we let Xj denote a (p 3 1) vector of mea-

sured environmental covariates for subject j.

Semiparametric-Regression Model
We propose the use of semiparametric regression to model the re-

lationship between the outcome Yj and the tagSNPs Gj, adjusting

for potential covariates in Xj. We can write this semiparametric

model as the following:

Yj ¼ XT
j bþ h

�
Gj

�
þ ej (1)

Here, h(Gj) denotes a nonparametric function of the tagSNP geno-

type data Gj that resides in some function space k. b is a (p 3 1) vec-

tor of regression coefficients describing the effects of Xj, which are

modeled parametrically. Finally, ej is a random subject-specific en-

vironmental effect, which we assume to be normally distributed

with mean 0 and variance s2.

Within the model in Equation 1, interest focuses primarily on

the estimation of the nonparametric function of the tagSNP data

h and its relationship to the trait outcome Yj. Secondary interest

focuses on the estimation and testing of b to assess the effects of

the covariates in Xj on Yj. Because we are using a semiparametric

framework in Equation 1, traditional maximization procedures

for linear regression models are not applicable in this setting. To

estimate h and b, we instead propose the use of the flexible

LSKM procedure to analyze our high-dimensional data (which,

in our context, refers to the tagSNP genotype data in Gj). Using

the LSKM approach of Liu et al.,20 we obtain the following esti-

mates of h and b in Equation 1:

ĥ ¼ KðK þ lIÞ�1�Y �Xb̂
�

(2)

b̂ ¼
h
XTðK þ lIÞ�1X

i�1

XTðK þ lIÞ�1Y (3)

Here, Y ¼ ðY1,.,YNÞT is an (N 3 1) vector of the trait values for all

subjects and X is an (N 3 p) matrix of environmental covariates for

all subjects. Further, I denotes an (N x N) identity matrix. Finally,

there are two additional terms in Equations 2 and 3 that are impor-

tant to discuss. The first term is the parameter l, which denotes

a scalar smoothing parameter. As we will show in subsequent sec-

tions, l plays an important role in constructing appropriate test

statistics to assess whether the nonparametric function h of the

tagSNP genotype data influences Y.

The second important term in Equations 2 and 3 is K, which

denotes an (N 3 N) kernel matrix that is a function of the tagSNP

genotype data in the region. In particular, the (j, l)th element of K

denotes a kernel k(Gj, Gl) that is a scalar function of the tagSNP ge-

notypes of subjects j and l. Broadly speaking, k(Gj, Gl) will often be

a measure of pairwise tagSNP-genotype similarity across the

region. Because k(Gj, Gl) is scalar, the kernel intuitively serves as

a dimension-reducing function as it collapses the comparison of

the multidimensional tagSNP vectors Gj and Gl into a simple scalar

factor. A variety of choices exist for the kernel function k(Gj, Gl).
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However, the choice of kernel is not arbitrary. In particular, the

kernel function in K within Equations 2 and 3 must satisfy the

conditions of Mercer’s Theorem,21 which includes the condition

that the K matrix must be positive semidefinite (i.e., the eigen-

values of K must be positive).

For this article, we focus on kernel functions that are based on

the number of alleles shared identical by state (IBS) by subjects

j and l at the tagSNPs within the region.17 The IBS kernel takes

the form

k
�
Gj,Gl

�
¼

XS

s¼1

IBS
�
Gj,s,Gl,s

�

2S
, (4)

where IBS(Gj,s, Gl,s) denotes the number of alleles shared IBS (0, 1,

or 2) by subjects j and l at tagSNP s. An appealing feature of the IBS

kernel is that we can augment it to include tagSNP-specific weights

that can incorporate valuable prior information into analysis to

potentially improve performance. Define ws as a scalar weight

for tagSNP s. We can then define a weighted-IBS kernel based on

Equation 4 as the following:

k
�
Gj,Gl

�
¼

XS

s¼1

wsIBS
�
Gj,s,Gl,s

�

XS

s¼1

ws

(5)

We focus on two potentially valuable weights for use in the IBS

kernel in Equation 5. First, we consider a weight that upweights

tagSNPs with a rare minor-allele frequency (MAF) and down-

weights tagSNPs with more common MAFs. Such a weight could

be valuable because of the potential for the information from

tagSNPs with rare MAFs to be smoothed over by the information

from surrounding tagSNPs with more common MAFs. To up-

weight tagSNPs with rare MAFs, we apply the weight ws ¼ 1=ffiffiffiffiffi
qs
p

, where qs denotes the MAF of tagSNP s (s ¼ 1, ., S). Other

MAF weights are certainly possible, such as ws ¼ 1/qs, but there

is concern that such stronger weights may substantially diminish

the information provided by those tagSNPs with common MAF.

In addition to weights based on MAF, we can use weights based

on prior evidence of association between the tagSNP and the trait

(or a related trait of interest) in an independent dataset. Here, we

let ws ¼ � log10(ps) where ps is the p value for the test of tagSNP s

with the trait in the independent dataset. Intuitively, such weights

will upweight SNPs showing stronger prior evidence of association

and downweight SNPs that demonstrate weaker prior evidence of

association. As noted in the Discussion, we feel that such weights

are, or will be, readily available from relevant genetic literature or

public release of data from whole-genome association studies.

Relationship to Linear Mixed Models
Inspection of ĥ in Equation 2 shows that the nonparametric func-

tion in Equation 1 models the tagSNP genotype data in a reduced-

dimension space k induced by the chosen kernel function in K.

Next, we focus on constructing an appropriate test statistic to eval-

uate whether the function h of the tagSNP genotype data is asso-

ciated with the trait of interest. That is, we wish to construct

a test statistic to evaluate the null hypothesis H0: h ¼ 0, where

we model h by using Equation 1. To facilitate the construction

of such a test statistic, Liu et al.20 noted that LSKM-based estima-

tion of ĥ and b̂ is analogous to the estimation of random and fixed

effects, respectively, within a specific linear mixed model.
ry 2008



Therefore, rather than employ complicated procedures to directly

test H0: h ¼ 0, we can exploit the LSKM relationship with a mixed

model to apply a likelihood framework to construct an appropriate

test statistic for inference. Additionally, the use of a linear mixed

model for inference is appealing because it allows implementation

of our approach with any common software package for mixed-

model analysis (e.g., SAS PROC MIXED).

To apply the results from Liu et al.20 and develop the mixed-model

representation of the LSKM analysis by using the semiparametric

model in Equation 1, we consider the following linear mixed model:

Y ¼ Xbþ hþ E, (6)

where Y denotes the earlier trait vector and X denotes the earlier

matrix of fixed environmental covariates with related regression-

coefficient vector b. Within Equation 6, we denote h as a (N 3 1)

vector of random effects belonging to the tagSNP genotype data

and denote E as a vector of random effects due to subject-specific

environment.

Suppose we assume that the random tagSNP effects in h follow

a multivariate normal distribution with mean 0 and variance-co-

variance matrix s2

l
K, where K is our kernel matrix, l denotes the

smoothing parameter discussed earlier, and s2 denotes the vari-

ance due to subject-specific environment. Further, suppose we as-

sume that E also follows a multivariate normal distribution with

mean vector 0 and variance-covariance matrix s2I, where I denotes

the identity matrix. Under these assumptions, we can use re-

stricted maximum likelihood (REML) procedures commonly ap-

plied to linear mixed models to estimate (b, l, s2). After applying

REML procedures, we can show, following Liu et al.,20 that the

best-linear unbiased estimators of the random effects h and the

fixed effects b in the linear mixed model are

ĥ ¼ KðK þ lIÞ�1�Y �Xb̂
�

(7)

b̂ ¼
h
XTðK þ lIÞ�1X

i�1

XT ðK þ lIÞ�1Y, (8)

where l can be estimated with REML procedures. One can see that

the estimates of ĥ and b̂ in Equations 7 and 8 are exactly the same

as the estimates of ĥ and b̂ in Equations 2 and 3, respectively,

derived via LSKM estimation of the semiparametric model in

Equation 1. The equivalence of these estimates shows that we

can perform our LSKM multilocus analysis by using a straightfor-

ward linear mixed model that is easy to implement with existing

statistical software packages for mixed models.

Testing the Nonparametric Function
The relationship between LSKM and the linear mixed model im-

plies that we can test H0: h¼ 0 in the semiparametric model by ap-

propriate testing of the existence of the random tagSNP effect h in

the linear mixed model in Equation 6. As noted earlier, we assume

that h follows a multivariate-normal distribution with mean vec-

tor 0 and covariance matrix s2

l
K. Assume t ¼ s2=l such that we

rewrite the covariance matrix as tK. If t ¼ 0, then this directly

implies that h ¼ 0. Because K must be positive semidefinite under

the LSKM model21 (with diagonal elements equaling 1 with any of

the suggested kernel functions), it also follows that h ¼ 0 only

when t ¼ 0. Therefore, a test of H0: t ¼ 0 in the linear mixed model

(Equation 6) is equivalent to testing H0: h ¼ 0 in the semipara-

metric model (Equation 1).

To test H0: t ¼ 0, we propose the use of the score statistic of Liu

et al.20 The score statistic takes the form
The Am
St ¼
1

2ŝ2

�
Y �Xb̂

�T
K
�
Y � Xb̂

�
, (9)

where b̂ and ŝ2 are the maximum-likelihood estimates of b and s2

under H0, which are obtained from the linear-regression model

Y ¼ Xb þ E. Because t R 0, we are testing the parameter of interest

on its boundary value.As a result,St doesnot follow a standard c2
1 dis-

tribution under H0 and, instead, follows a complicated mixture of c2
1

distributions.Tosimplify inference,weuseaSatterthwaiteprocedure

(described in Appendix A) to approximate the distribution of St.

Simulations
We used simulations to assess the performance of our semipara-

metric approach in a typical candidate-gene study. For genetic

data, we used simulated tagSNP data based on the Centre d’Etude

du Polymorphisme Humain (CEU) genotypes from build 35 of the

International HapMap Project.4 We based our simulations on the

LD structure of two genes: CHI3L2 (MIM 601526) and NAT2

(MIM 243400). CHI3L2 is 15.8 kb long, with 37 polymorphic

SNPs in the CEU sample. NAT2 spans 9.9 kb, with 20 polymorphic

SNPs in the same sample. Within each gene, we selected tagSNPs

by using the Tagger program.3 We allowed for multimarker tagging

and captured all polymorphic markers in each gene with R2 > 0.8,

regardless of the marker’s minor-allele frequency. Using these cri-

teria, we identified ten tagSNPs for CHI3L2 and seven tagSNPs

for NAT2. We show the LD structure of the tagged and nontagged

SNPs within CHI3L2 and NAT2 in Figures 1 and 2, respectively.

Within each gene, we applied PHASE22–24 to the genetic data to

estimate haplotype frequencies for the encompassed SNPs. We

then generated relevant SNP genotype data at each gene for each

subject by using these estimated haplotype frequencies under

the assumption of Hardy-Weinberg equilibrium.

To ensure that our semiparametric approach had appropriate

size, we first considered simulations under null models where

none of the SNPs within the gene had an effect on our trait of

interest. However, we did allow for trait-influencing effects from

environmental predictors. Therefore, we simulated trait data un-

der the following null model:

Yj ¼ XEj
bE þ ej (10)

Here, XEj
denotes the coding vector of environmental covariates

for subject j with respective effect-size vector bE. We assumed

that XEj
contained both a binary covariate (with frequency of ex-

posure of 0.506) and a continuous covariate (assumed to be nor-

mally distributed with mean 29.2 and variance 21.1). The assumed

parameterization for the covariates closely mirrored those of rele-

vant covariates in the FUSION study of type 2 diabetes.25 We as-

sumed that the effect size was 0.50 for the binary covariate and

0.03 for the continuous covariate. Finally, we let ej denote a ran-

dom subject-specific error term for subject j, which we generated

under a normal distribution with mean 0 and variance 1.

We next considered simulations under alternative models where

we selected one of the SNPs within the gene to serve as the QTL.

We allowed the QTL to be either a typed tagSNP or an untyped

SNP but required the variant to have MAF greater than 0.05 (as

done elsewhere10,12,14). Within CHI3L2, 30 of the 37 polymorphic

SNPs fulfilled this criteria, with six of these 30 polymorphisms

being tagSNPs. Within NAT2, 17 of the 20 polymorphic SNPs

fulfilled this criteria, with three of the 17 polymorphisms being

tagSNPs. Denoting the QTL as S*, we generated the trait outcome

for subject j with the following model:
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Figure 1. LD Plot of 37 Polymorphic SNPs within the CHI3L2 Gene
Results based on the CEU sample from the International HapMap Project. TagSNPs are denoted by a box surrounding the relevant SNP
label.
Yj ¼ XGj,S� bS� þXEj
bE þ ej (11)

Here, XGj,S� denotes the coding of the genotype at QTL S* for sub-

ject j with respective effect size bS� . We considered additive, dom-

inant, and recessive effects of the minor allele and chose bS� in

each case such that the QTL S* explained 3% of the trait variation,

which is reasonable given that many complex traits originate from

the effects of multiple genes each with small effect. We assumed

values for XEj
and bE that were the same as those used in the

null simulations.

For a given simulation design, we generated either 5000 datasets

(for null models) or 1000 datasets (for alternative models), each

consisting of 300 unrelated subjects. Each dataset contained trait

data on all subjects, genotype data for the tagSNPs in the candi-

date gene, and environmental data on the covariates mentioned

earlier. We assumed that we did not observe genotypes at untyped

SNPs (even though such untyped SNPs may be QTLs). We ana-

lyzed each dataset by using both our proposed semiparametric ap-

proach and, as a benchmark, traditional single-tagSNP statistics

(modeled under an additive model of allelic effect).

For our semiparametric approach, we analyzed the data three

times. First, we used the unweighted IBS kernel in Equation 4.

Next, we used the weighted IBS kernel in Equation 5 with weights
390 The American Journal of Human Genetics 82, 386–397, Februar
based on the MAF of the tagSNP. Finally, we used a weighted IBS

kernel with weights based on single-tagSNP p values from an inde-

pendently generated dataset. We wished to evaluate the perfor-

mance of this last kernel when we simulated the independent da-

taset both under the same genetic model as and under a different

genetic model than that used in our dataset under study. The pri-

mary purpose of a independent-dataset simulation under a differ-

ent genetic model than the one used for the dataset of interest was

to address whether inappropriate prior p value weights from an in-

dependent dataset affected the size of our semiparametric ap-

proach. We investigated this issue by generating the dataset under

study with the null model in Equation 10 but generating the inde-

pendent dataset with the alternative model (Equation 11) assum-

ing a particular SNP as the QTL.

For the single-tagSNP tests, we performed least-squares regres-

sion at each tagSNP in the gene under an additive model (allowing

for the binary and continuous covariates) and tested the effect of

the tagSNP by using a Wald statistic. We retained the largest Wald

statistic across the tested tagSNPs and used 5000 permutations of

the data to establish the significance of this maximum statistic.

We examined type I error and power of the semiparametric and

single-tagSNP approaches assuming a nominal significance level

of a ¼ 0.05.
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Figure 2. LD Plot of 20 Polymorphic SNPs Residing within the NAT2 Gene
Results based on the CEU sample from the International HapMap Project. TagSNPs are denoted by a box surrounding the relevant SNP
label.
Results

Table 1 provides the empirical type I error results at nomi-

nal a ¼ 0.05 for our semiparametric method assuming the

different IBS-based kernels described in the Material and

Methods. These results suggest our semiparametric ap-

proach has appropriate size regardless of the choice of
The Am
kernel. In particular, we note that our semiparametric ap-

proach using p value weights has appropriate size when

we select weights by using a dataset that is generated under

a different model (i.e., is genetically heterogeneous) from

that used for the dataset under study. This result is impor-

tant because it suggests that the choice of inappropriate p

value weights does not affect the size of our score statistic
Table 1. Empirical Type I Error Rates at a ¼ 0.05

Gene Single-Locus Test

Semiparametric Approach Using IBS Kernel

MAF (Same) p Value (Diff) p Value

Unweighted Weights Weights Weights

CHI3L2 0.0474 0.0458 0.0560 0.0518 0.0522

NAT2 0.0522 0.0486 0.0492 0.0494 0.0496

Results are based on 5000 replicates. ‘‘Same’’ p value weights were based on an independent dataset generated under the same model as the dataset under

study. ‘‘Diff’’ p value weights were based on an independent dataset generated under an alternative model where the QTL SNP explained 3% of the trait

variation. For simulations based on CHI3L2, the QTL SNP was rs961364 (MAF ¼ 0.293). For simulations based on NAT2, the QTL SNP was rs1799930

(MAF ¼ 0.292).
erican Journal of Human Genetics 82, 386–397, February 2008 391



Figure 3. Power Results for Simulations Based on the CHI3L2 Gene
Power results at a ¼ 0.05 for simulations based on the CHI3L2 gene under additive (A), dominant (B), and recessive (C) mechanisms of
allelic effect for the QTL SNP. The x axis labels show the name and minor-allele frequency of the QTL SNP used in the simulation (tagSNPs
are shown in bold). For the IBS kernel with p value weights, we obtained a relevant p value for each tagSNP based on single-locus tests of
an independent dataset simulated under the same model.
and, hence, does not affect the validity of our semipara-

metric approach. For comparison, we analyzed the same

datasets by using the maximum of the single-tagSNP statis-

tics, which also had appropriate size.

Figure 3 shows power results for simulations based on

the CHI3L2 gene. The x axis of the figure shows the

CHI3L2 SNP used as the QTL in the simulation, as well as

the SNP’s MAF. The y axis shows the power of our semi-

parametric approach using IBS kernels weighted by either

the tagSNPs’ MAFs or the tagSNPs’ p values from an inde-

pendently generated dataset. The y axis also shows the

power of the maximum of the single-tagSNP statistics,

which serves as a benchmark for our proposed semipara-

metric approaches. The plots show that our proposed semi-

parametric approach using a weighted IBS kernel based on

tagSNPs’ p values clearly has optimal performance relative

to the other approaches shown in the figure, regardless

of the genetic model used to simulate the data, the nature

of the SNP used as the QTL (i.e., tagSNP or untyped SNP),

and the SNP’s MAF. This increased power is hardly surpris-

ing, given that the approach using a kernel weighted by
392 The American Journal of Human Genetics 82, 386–397, February
p values is the only one of the three shown that uses addi-

tional information from an independent dataset to assist

in inference.

Although the IBS kernel weighted by MAF displays lower

power than the IBS kernel weighted by p values, Figure 3

shows that the former kernel is still generally more powerful

than the maximum of the single-tagSNP statistics across

QTLs and genetic models. There are a few situations where

this condition does not hold, however. In particular, under

an additive model, results show that the maximum of sin-

gle-tagSNP statistics is more powerful than the weighted

IBS kernel based on MAF for QTL SNPs with MAF < 0.10

(e.g., SNP rs2182115, MAF ¼ 0.085). However, this power

difference between the two approaches substantially de-

creases for dominant and recessive genetic models.

Figure 4 shows analogous power results for simulations

based on the NAT2 gene. Overall, we observed similar power

results for this gene compared to that of the CHI3L2 gene.

Our semiparametric method using the IBS kernel weighted

by p values substantially outperformed the other compet-

ing approaches across all genetic models tested, although
2008



Figure 4. Power Results for Simulations Based on the NAT2 Gene
Power results at a ¼ 0.05 for simulations based on the NAT2 gene under additive (A), dominant (B), and recessive (C) mechanisms of
allelic effect for the QTL SNP. The x axis labels show the name and minor-allele frequency of the QTL SNP used in the simulation (tagSNPs
are shown in bold). For the IBS kernel with p value weights, we obtained a relevant p value for each tagSNP based on single-locus tests of
an independent dataset simulated under the same model.
the difference was most pronounced under a dominant

model. The semiparametric approach weighted by MAF

generally exhibited greater power than the maximum of

the single-tagSNP statistics across the tested SNPs and ge-

netic models. The differences in power were most pro-

nounced under dominant and recessive models. We antici-

pate this finding because the semiparametric approach uses

a nonparametric approximation of the tagSNP effect [via

h($) in Equation 1] that makes the approach robust to the ef-

fects of model misspecification (unlike traditional tag-SNP

tests that typically assume a parametric additive model).

We also note the low power observed for all methods at

one particular marker, rs1961456. As seen in Figure 2, this

marker displays comparatively weak LD with the other

SNPs in the gene, which leads to relatively low power by

all methods to detect the association between the trait

and this particular SNP.

To simplify presentation, we did not show power results

for the unweighted IBS kernel (Equation 4) in Figures 3 and

4. Overall, the performance of the unweighted IBS kernel

was similar to that of the IBS kernel weighted by MAF
The Am
with a few notable differences. For QTL SNPs with MAF >

0.10, we found that the unweighted IBS kernel had equiv-

alent or slightly improved power compared to the IBS ker-

nel weighted by MAF. However, for QTL SNPs with MAF <

0.10, we found that the unweighted IBS kernel could have

substantially reduced power relative to the IBS kernel

weighted by MAF. For example, assuming an additive

model where the QTL SNP was rs2182115 (MAF ¼ 0.085)

in CHI3L2, we found that the power of the unweighted

IBS kernel was 0.327 compared to 0.498 for the IBS kernel

weighted by MAF. This result suggests that, without

weighting, the effects of QTL SNPs with rare MAFs may be

smoothed over by information from surrounding SNPs

with more common MAFs. Because the IBS kernel weighted

by MAF appears to have better performance averaged across

the range of MAF compared to the unweighted IBS kernel,

we recommend the use of the former kernel over the latter

in association analysis.

Although primary interest focuses on the testing of the

nonparametric function h, secondary interest may focus

on the estimation and testing of environmental covariate
erican Journal of Human Genetics 82, 386–397, February 2008 393



effects. Table 2 shows estimates of the mean and standard

deviation, along with the empirical standard deviation, of

the regression parameters related to the binary and contin-

uous covariates used in our simulations. Because of the

large number of SNPs and models examined, we display

results only for one representative configuration of both

the NAT2 and CHI3L2 genes. These examples show that

the semiparametric-regression method produces unbiased

estimates of the covariate effects with empirical standard

deviations that closely match the LSKM-based standard

deviations. We observed similar results for other simula-

tion models (results not shown).

Discussion

In this article, we have proposed a flexible semiparametric-

regression framework for association mapping of quantita-

tive traits that uses genotype data from multiple tagSNPs

within a region of interest. Using simulated genetic data

based on real data from the International HapMap Project,4

we demonstrated that our approach often has superior per-

formance compared to tests of individual tagSNPs, which is

the most common approach for association mapping of

complex traits. Our method’s improved performance re-

sults from modeling the effects of multiple tagSNPs within

a reduced-dimension function, thereby using more genetic

information in analysis but producing test statistics (based

on the function) with smaller degrees of freedom than typ-

ical multivariate methods. In addition to improved power,

our approach is also quite flexible because it can easily

adjust for the effects of potential confounders (such as

subpopulation assignment in a stratified population) and,

further, can evaluate interaction effects among tagSNPs

Table 2. Parameter Estimates of Environmental Covariates
with the Semiparametric Approach

Genetic Model

NAT2 CHI3L2

b̂E,Bin b̂E,Cont b̂E,Bin b̂E,Cont

Additive

Mean 0.503 0.030 0.504 0.030

Std. Dev. 0.117 0.013 0.117 0.013

Est. Std. Dev. 0.118 0.013 0.118 0.013

Dominant

Mean 0.503 0.030 0.504 0.030

Std. Dev. 0.118 0.013 0.118 0.013

Est. Std. Dev. 0.118 0.013 0.118 0.013

Recessive

Mean 0.503 0.030 0.503 0.030

Std. Dev. 0.117 0.013 0.116 0.013

Est. Std. Dev. 0.118 0.013 0.118 0.013

bE,Bin and bE,Cont denote effect sizes for the binary and continuous covari-

ates, respectively, described in the simulations. The true value of bE,Bin is

0.50, and the true value of bE,Cont is 0.03. Results are based on 1000 repli-

cates generated under an alternative model. For NAT2 simulations, the QTL

SNP was rs1799930 (MAF ¼ 0.292). For simulations based on CHI3L2, the

QTL SNP was rs961364 (MAF¼ 0.293). For all simulations, we analyzed rep-

licates by using our semiparametric approach and assuming a IBS kernel

weighted by MAF.
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and environmental factors (by modeling such interactions

parametrically or nonparametrically with the function h in

Equation 1). By maximizing the semiparametric model

with LSKM, we show that we can fit the model easily by us-

ing common maximization procedures—available in a vari-

ety of software packages —for linear mixed models. The ap-

proach is computationally efficient to implement; analysis

of 1000 replicates of simulated data (with the design de-

scribed in the Simulations section) took only 5 min to

run on a Dell Latitude D810 with a 2.26 GHz processor.

We provide SAS and Fortran code for implementing the ap-

proach on our website (Epstein Software).

We applied our semiparametric approach to the problem

of testing whether a specific region influenced a quantita-

tive trait of interest. However, with some effort, we can ex-

tend our approach to create a multilocus association test

for genome-wide association studies. Specifically, we can

implement our approach by using a sliding-window pro-

cess that considers overlapping or nonoverlapping sets of

tagSNPs across each chromosome. Within a particular win-

dow, we can apply our approach to the genotype data from

the multiple tagSNPs and produce a statistic for testing

whether the tagSNPs within the given window are associ-

ated with the trait of interest. After constructing test statis-

tics for each window across the genome, we can establish

significance of a particular statistic (taking into account

the adjustment for multiple correlated tests) by using ei-

ther permutations or a more computationally efficient ap-

proach based on adjustment of correlated p values.26,27 We

will investigate this latter approach in a subsequent paper.

As with traditional multilocus genotype and haplotype

analyses, we were primarily interested in applying our

semiparametric approach to regions of modest size con-

taining tagSNPs in various degrees of LD with one another

and, presumably, the QTL of interest. Nevertheless, we

conducted additional simulations examining the stability

and performance of our semiparametric approach in situa-

tions where the region of interest (and the number of mod-

eled tagSNPs) was considerably larger. For example, using

the HapMap CEU sample, we conducted simulations using

33 tagSNPs contained within the 74 kb HNF4a gene (MIM

600281) and found that our approach always converged

properly and had appropriate type I error (results not

shown). Regarding power, we found that the performance

of our semiparametric approach using p value weights was

still improved over the single-locus approach as the num-

ber of tagSNPs and the length of region considered in-

creased. However, using MAF weights, we found that the

performance of our method became quite similar to the

single-locus method as the length of the region of interest

(and the number of tagSNPs) increased. We explain this re-

sult by noting that, as the size of the region of interest in-

creases, the chance of including tagSNPs that are uncorre-

lated with the true QTL also increases. Such uncorrelated

tagSNPs only introduce noise into our method, which

makes the true signal from the QTL more challenging to

find. In these situations, we recommend applying our
ry 2008



approach within a sliding-window framework, described

in the previous paragraph, that considers smaller sets of

tagSNPs and thereby decreases the chance of including

tagSNPs uncorrelated with the QTL within analysis.

An appealing feature of our semiparametric approach is

that it can utilize prior information (in the form of

weights) to improve one’s ability to detect trait-influencing

regions. Within this article, we considered both MAF

weights and p value weights for inference. Other weights

are certainly possible (e.g., when gene information is

used) and, further, such weights could actually be compos-

ite weights that combine information from different sour-

ces (e.g., MAF and p values). In this situation, we would

first normalize the separate weights to be on the same scale

and then develop the composite weight as an average of

these scaled weights. We could further modify these com-

posite weights to emphasize one particular source (e.g., p

values) over the others in analysis, if so desired.

Of the weights we considered, the most appealing choice

is to use the strength of evidence for association between

that tagSNP and the trait of interest (or a correlated trait)

from an independent study. We quantify this strength on

the basis of the �log10 of the relevant p value. To obtain

such p values, one could conduct an exhaustive literature

search of relevant genetic studies of interest. However,

we note that such p value weights will become increasingly

available with the public release of tagSNP genotype and

phenotype data from whole-genome association studies

into free databases (often a requirement for National Insti-

tutes of Health [NIH] funding of such projects). An exam-

ple of such a database is the NIH-sponsored dbGaP, which

will eventually contain information on at least ten whole-

genome association studies of complex traits. Also, if a

study happens to have p value weights available for certain

tagSNPs but not others, then one can apply imputation

procedures28,29 to obtain p values for these untyped vari-

ants by using information from nearby SNPs coupled to

LD patterns from references sampled from the HapMap

project.4 Finally, we strongly recommend against using

p value weights based on single-tagSNP analysis of the

same dataset upon which one intends to apply the pro-

posed semiparametric approach. Such an application will

lead to anticonservative tests (results not shown).

In implementing our approach, we assumed no missing

genotype data for the tagSNPs in the region of interest.

Although our approach doesn’t naturally accommodate

missing genotype data within the nonparametric function,

we note that we can use existing statistical procedures for

imputing genotype data for a given subject to resolve

this issue. Such imputation procedures can rely on the

LD structure of nearby SNPs to predict a subject’s missing

genotype by using either observed genotype data from

the study sample30 or appropriate genotype data from

the International HapMap project.31 Once we impute

missing genotypes, we can then incorporate them within

our nonparametric function and proceed with analysis as

we previously described.
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Although we have developed our approach for associa-

tion analysis of quantitative trait data, we note that we

can extend our approach to conduct similar multi-SNP as-

sociation analysis in case-control studies of disease. For

such analyses, we would consider a semiparametric logis-

tic-regression model for a binary outcome (Yj ¼ 1 and

0 for cases and controls, respectively) with the form

logðmj=1� mjÞ ¼ XT
j bþ hðGjÞ, where mj ¼ P[Yj ¼ 1jGj, Xj]

and Gj, Xj, b, h($) are defined previously as in Equation 1.

Maximization of parameters in this semiparametric logis-

tic-regression model requires the use of a modified LSKM

algorithm that is similar to Liu et al.20 but correctly models

the categorical nature of the disease data. As we will de-

scribe more thoroughly in a subsequent paper, we can con-

duct this LSKM analysis analogously by using a logistic

mixed model with the form logðmh
j =1� mh

j Þ ¼ XT
j bþ h,

where Xj, b, and h are defined as previously and mj
h ¼

E[YjjXj, h]. We assume that the random tagSNP effects in

h follow a multivariate normal distribution with mean vec-

tor 0 and variance-covariance matrix l�1K, where l de-

notes the smoothing parameter and K denotes the chosen

kernel matrix. Under these conditions, we can maximize

this nonlinear mixed model with a corrected penalized

quasi-likelihood algorithm32 and estimate the nonpara-

metric function by ĥ in the LSKM model by ĥ in the logistic

mixed model. We can then apply a score statistic similar to

that of Liu et al.20 to test the nonparametric function of the

genotype data. Although the iterative nature of the penal-

ized quasi-likelihood algorithm will increase the numerical

complexity of the semiparametric analysis, it should still

be computationally efficient for candidate-gene or whole-

genome association analysis.

Our approach fits a semiparametric regression model us-

ing LSKM, which we show corresponds to inference via

a specific linear mixed model. Although mixed-modeling

procedures often are connected to pedigree analysis,33–35

we note that their elegance and flexibility make them in-

creasingly popular tools for association mapping in popu-

lation-based or case-control studies. Tzeng and Zhang36

have proposed a powerful mixed model for SNP-based hap-

lotype analysis of complex traits that models the covari-

ance of the outcomes among a pair of subjects as a function

of their (inferred) haplotype similarity along a region of in-

terest. The distribution of the authors’ random effect has

similarity to the distribution of the random tagSNP effect

in our linear mixed model, although the authors’ approach

is not based on the use of reproducing kernels in a LSKM

framework. Further, their approach focuses primarily on

use of SNP-based haplotypes in their covariance structure

and does not consider the use of influential and valuable

prior weights in analysis. Another mixed-model tool for

such a study consists of a two-level hierarchical model.37,38

The first level of the hierarchical model regresses the trait

outcome on the SNPs of interest (and potential con-

founders), whereas the second level models the SNP-

related risk parameters as a function of influential covari-

ates including the underlying haplotype structure39 or
erican Journal of Human Genetics 82, 386–397, February 2008 395



available pathway information.40,41 Such second-level in-

formation can improve the precision and accuracy of

SNP-based risk estimates.

Because our semiparametric approach is implemented in

a linear mixed model, we implicitly assume that the trait

data follow or can be transformed to follow approximate

normality. With mixed-model-based linkage analysis of

quantitative traits,34 violation of this normality assump-

tion can yield inflated type I error rates to detect linkage

if the trait distribution is leptokurtic in nature.42 To exam-

ine whether our semiparametric approach is similarly sen-

sitive to nonnormality of the trait outcome, we conducted

additional type I error simulations that generated trait data

under various nonnormal distributions (e.g., gamma and

log-normal distributions) with large kurtosis values. In all

trait simulations, we found that our semiparametric ap-

proach had appropriate type I error under the null hypoth-

esis (results not shown) and hence does not appear to be

sensitive to nonnormality of the trait data.

Appendix A

Approximate Distribution of the Score Statistic St

in Equation 9

We consider the linear mixed model described previously

in Equation 6:

Y ¼ Xbþ hþ E,

where Y is the vector of quantitative trait values, X is the

vector of fixed effects, h is the vector of random tagSNP ef-

fects and follows a multivariate normal distribution with

mean 0 and variance-covariance matrix tK, and E is a vector

of subject-specific random effects and follows a multivari-

ate normal distribution with mean 0 and variance-covari-

ance matrix s2I.

Using the mixed model in Equation 6, we seek to deter-

mine the distribution of the score statistic in Equation 9 for

testing H0: t ¼ 0. Zhang and Lin43 noted that, because t R

0, we are testing the parameter on its boundary value, and,

as a result, the distribution of St follows a mixture of c1
2

distributions. To facilitate inference, the authors showed

that one can approximate this complicated mixture distri-

bution with a scaled c2 distribution dcn
2, where d denotes

the scale parameter and n denotes the degrees of freedom.

To estimate d and n, the authors suggested the use of the

Satterthwaite method, which equates the mean and vari-

ance of the score statistic St in Equation 9 with the mean

and variance of dc2
n.

Let e denote the mean of St and let Itt denote the vari-

ance of the score statistic. When calculating the mean

and variance of St, we must account for the fact that we

use estimates of s2 and b instead of the true values of these

parameters in Equation 9. Therefore, we replace the mean

e with ~e ¼ tr(P0K)/2, where P0 ¼ I � X(XTX)�1XT is the

projection matrix under the null hypothesis. Also, we re-
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place the variance Itt with the efficient information ~Itt as

follows:

~Itt ¼ Itt � Its2 I�1
s2s2 IT

ts2 ,

where Itt ¼ trðP0KÞ2=2,Its2 ¼ trðP0KP0Þ=2, and Is2s2 ¼
trðP2

0Þ=2:
Once we obtain ~e and ~Itt, we can set the former equal to

dn (the mean of a dc2
n random variable) and the latter equal

to 2d2n (the variance of a dc2
n random variable). After solv-

ing the system of equations, we calculate the scale param-

eter for the approximate distribution as d ¼ ~Itt=2~e and cal-

culate the degrees of freedom as n ¼ 2~e2=~Itt. We can then

compare the value of the resulting scaled score statistic,

St/d, to a chi-square distribution with n degrees of freedom

in order to assess significance of the test of H0: t ¼ 0.
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